Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=C22×S3

Direct product G=N×Q with N=C3⋊S3 and Q=C22×S3
dρLabelID
C22×S3×C3⋊S372C2^2xS3xC3:S3432,768

Semidirect products G=N:Q with N=C3⋊S3 and Q=C22×S3
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊(C22×S3) = C22×C32⋊D6φ: C22×S3/C22S3 ⊆ Out C3⋊S336C3:S3:(C2^2xS3)432,545
C3⋊S32(C22×S3) = C2×S33φ: C22×S3/D6C2 ⊆ Out C3⋊S3248+C3:S3:2(C2^2xS3)432,759
C3⋊S33(C22×S3) = C22×C324D6φ: C22×S3/C2×C6C2 ⊆ Out C3⋊S348C3:S3:3(C2^2xS3)432,769

Non-split extensions G=N.Q with N=C3⋊S3 and Q=C22×S3
extensionφ:Q→Out NdρLabelID
C3⋊S3.1(C22×S3) = S3×S3≀C2φ: C22×S3/S3C22 ⊆ Out C3⋊S3128+C3:S3.1(C2^2xS3)432,741
C3⋊S3.2(C22×S3) = S3×PSU3(𝔽2)φ: C22×S3/S3C22 ⊆ Out C3⋊S32416+C3:S3.2(C2^2xS3)432,742
C3⋊S3.3(C22×S3) = C2×C33⋊D4φ: C22×S3/C6C22 ⊆ Out C3⋊S3244C3:S3.3(C2^2xS3)432,755
C3⋊S3.4(C22×S3) = C2×C322D12φ: C22×S3/C6C22 ⊆ Out C3⋊S3248+C3:S3.4(C2^2xS3)432,756
C3⋊S3.5(C22×S3) = C2×C33⋊Q8φ: C22×S3/C6C22 ⊆ Out C3⋊S3488C3:S3.5(C2^2xS3)432,758
C3⋊S3.6(C22×S3) = C2×S3×C32⋊C4φ: C22×S3/D6C2 ⊆ Out C3⋊S3248+C3:S3.6(C2^2xS3)432,753
C3⋊S3.7(C22×S3) = C22×C33⋊C4φ: C22×S3/C2×C6C2 ⊆ Out C3⋊S348C3:S3.7(C2^2xS3)432,766

׿
×
𝔽